320411 (20)

BE ($4^{\text {th }}$ Semester)
Examination, April-May, 2021
Branch : Civil
STRUCTURAL ANALYSIS - I
Time Allowed: Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28
Note : All the questions are compulsory. Solve
questions worth 16 marks from each unit. Choice
is clearly marked. Assume any data (if missing)
and mention it clearly.

Unit-I
Q. 1. (a) Define degree of redundancy. What is the
difference between external and internal
redundancy ?
(b) Using method of tension coefficients analyse
the space truss shown and find the forces
acting in the members of truss. 12

320411 (20)

OR

A space frame is supported at A, B, C
and D in a horizontal plane through ball
joints. The member EF is horizontal, and
is at a height of 3.0 m above the base.

The loads at the joints E and F, shown
act in horizontal plane. Find forces in
all the members of the frame.12
(4)

Unit-II
Q. 2. (a) State the theorems used for confugate
beam.
(b) A beam of span 8.5 is simply supported
at the ends A and B and is loaded as
shown. $E=200 \times 10^{6} \mathrm{kN} / \mathrm{m}^{2}$ and $\mathrm{I}=$
$120 \times 10^{-6} \mathrm{~m}^{4}$. Determine :
12
(i) Deflection at mid span
(ii) Maximum deflection
(iii) Slope at the end ' A '

(7)

Unit-III

Q. 3. (a) Define strain energy.
(b) A vertical load W is applied to the rigid
cantilever frame. Assuming EI to be constant
throughout frame, determine horizontal and
vertical deflection of point ' C '. Neglect axial
deformation.

(9)

(iii) Castigliano's first theorem
(iv) Castigliano's second theorem

Unit-IV

Q. 4. (a) Draw the influence line diagram for B.M.
and S.F. for a beam simply supported at
ends.
2
(b) Find the position of UDL shorter than
span for maximum B.M. at any
section x .
4
(c) A system of 5 wheel loads 80,140 ,

160, $50,40 \mathrm{kN}$ crosses a beam of

15 m span with 80 kN load leading.

The distance between loads are 2.4 m ,
$3.0 \mathrm{~m}, 2.4 \mathrm{~m}$ and 1.6 m respectively.

Find the absolute maximum bending
moment.
10

Draw the influence line diagram for the

$$
\text { members } \mathrm{V}_{1} \mathrm{~V}_{2}, \mathrm{~V}_{2} L_{2}, \mathrm{~V}_{1} L_{2}, L_{1} \mathrm{~V}_{1}, \mathrm{AV}_{1} \text { for }
$$

Unit-V

Q. 5. (a) Explain what is theoretical arch ?
(b) What are functions of stiffening girders in
(c) The three hinged stiffening girder of a

$$
\text { suspension bridge of } 100 \mathrm{~m} \text { span is }
$$

subjected to two point loads of 10 kN each,
placed at 20 m and 40 m respectively
from the left hand hinge. Determine the
B.M. and S.F. in girder at section 30 m
from each end. Also determine the maximum
tension in the cable which has a central
dip of 10 m .
12

OR

A 3 hinged circular arch of span 16 m
and size 4.0 m is subjected to two point
loads of 100 kN and 80 kN at the left
and right quarter span points (i.e. 4 m).

Find reactions, also the bending moment,
radial shear and normal thrust at 6.0 from
left support.
(14)

